Allgemeine bauaufsichtliche Zulassung

Zulassungsnummer:
Z-9.1-679

Antragsteller:
Studiengemeinschaft Holzleimbau e. V.
Elfriede-Stremmel-Straße 69
42369 Wuppertal

Geltungsdauer
vom: 16. April 2013
bis: 30. Oktober 2014

Zulassungsgegenstand:
BS-Holz aus Buche und
BS-Holz Buche-Hybridträger

ALLGEMEINE BESTIMMUNGEN

1 Mit der allgemeinen baufälligkeitsrechtlichen Zulassung ist die Verwendbarkeit bzw. Anwendbarkeit des Zulassungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.

2 Sofern in der allgemeinen baufälligkeitsrechtlichen Zulassung Anforderungen an die besondere Sachkunde und Erfahrung der mit der Herstellung von Bauprodukten und Bauarten betrauten Person en nach den §17 Abs.5 Musterbauordnung entsprechenden Länderregelungen gestellt werden, ist zu beachten, dass diese Sachkunde und Erfahrung auch durch gleichwertige Nachweise anderer Mitgliedstaaten der Europäischen Union belegt werden kann. Dies gilt ggf. auch für im Rahmen des Abkommens über den Europäischen Wirtschaftsraum (EWR) oder anderer bilateraler Abkommen vorgelegte gleichwertige Nachweise.

3 Die allgemeine baufälligkeitsrechtliche Zulassung ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.

4 Die allgemeine baufälligkeitsrechtliche Zulassung wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.

7 Die allgemeine baufälligkeitsrechtliche Zulassung wird widerruflich erteilt. Die Bestimmungen der allgemeinen baufälligkeitsrechtlichen Zulassung können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.
Allgemeine baufremdlicher Zulassung
Nr. Z-9.1-679

II BESONDERE BESTIMMUNGEN

1 Zulassungsgegenstand und Anwendungsbereich

1.1 Zulassungsgegenstand
BS-Holz aus Buche nach dieser allgemeinen baufremdliehten Zulassung besteht aus mindestens drei flachseitig miteinander verklebten Lamellen aus Vollholz der Holzart Buche. BS-Holz Buche-Hybridträger bestehen aus Decklagen aus Lamellen der Holzart Buche und Kernlamellen aus Nadelholz.

1.2 Anwendungsbereich

1.2.2 Die Anwendung darf nur unter den klimatischen Umgebungsverhältnissen der Nutzungs- klasse 1 nach DIN 1052 oder DIN EN 1995-1-1 erfolgen.

1.2.3 BS-Holz aus Buche und BS-Holz Buche-Hybridträger, die mit chemischen Holzschutz- oder Feuerschutzmitteln behandelt sind, sind nicht Gegenstand dieser allgemeinen baufremdliehten Zulassung.

2 Bestimmungen für BS-Holz aus Buche und BS-Holz Buche-Hybridträger

2.1 Anforderungen an die Eigenschaften
2.1.1 Holz
2.1.1.1 BS-Holz aus Buche muss aus mindestens drei flachseitig miteinander verklebten Lamellen aus Vollholz der Holzart Buche (Fagus sylvatica) bestehen. BS-Holz Buche-Hybridträger bestehen aus beidseitigen Decklamellen aus Vollholz der Holzart Buche (jeweils mindestens 2) und Kernlamellen aus Nadelholz. Die Höhe H des Brettschichtholzes aus Buche darf maximal 500 mm und der Buche-Hybridträger 900 mm betragen. Die Breite des Brettschichtholzes aus Buche und der Buche-Hybridträger darf maximal 150 mm betragen.

¹ DIN 1052:2008-12
² DIN EN 1995-1-1:2010-12
³ DIN EN 1995-1-1/NA:2010-12

Entwurf, Berechnung und Bemessung von Holzbauwerken; Allgemeine Bemessungsregeln und Bemessungsregeln für den Hochbau
Eurocode 5: Bemessung und Konstruktion von Holzbauten - Teil 1-1: Allgemeines - Allgemeine Regeln und Regeln für den Hochbau
Die zu verklebenden Lamellen aus Vollholz der Holzart Buche müssen folgende Anforderungen erfüllen:

- Die Lamellen müssen visuell nach DIN 4074-5\(^4\) sortiert sein. Zusätzliche Kriterien bezüglich der Astigkeit und hinsichtlich des Elastizitätsmoduls sind für die Sortierklassen wie folgt zu erfüllen:

Tabelle 1: Sortierkriterien und Grenzwerte der Lamellen aus Buche

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Sortierkriterien nach DIN 4074-5</th>
<th>Zusätzlich Astigkeit</th>
<th>Elastizitätsmodul (N/mm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS 10</td>
<td>LS 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS 10 + E13</td>
<td>LS 10</td>
<td>13000 < E(_{\text{syn}})</td>
<td></td>
</tr>
<tr>
<td>LS 10 + E14</td>
<td>LS 10</td>
<td>14000 < E(_{\text{syn}})</td>
<td></td>
</tr>
<tr>
<td>LS 13</td>
<td>LS 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS 13 + A</td>
<td>LS 13</td>
<td>DEB ≤ 0,04</td>
<td></td>
</tr>
<tr>
<td>LS 13 + E14</td>
<td>LS 13</td>
<td>14000 < E(_{\text{syn}})</td>
<td></td>
</tr>
<tr>
<td>LS 13 + E15</td>
<td>LS 13</td>
<td>15000 < E(_{\text{syn}})</td>
<td></td>
</tr>
<tr>
<td>LS 13 + A + E15</td>
<td>LS 13</td>
<td>DEB ≤ 0,04</td>
<td>15000 < E(_{\text{syn}})</td>
</tr>
</tbody>
</table>

DEB = Astigkeit A für den Einzelast nach DIN 4074-5

Der dynamische Elastizitätsmodul E\(_{\text{syn}}\) ist über die Eigenfrequenz, die mittels Längsschwingungsmessung bestimmt wird, und die Rohdichte der Lamelle zu ermitteln.

- Die Querschnittsabmessungen der Lamellen dürfen b × h = 150 × 30 mm nicht überschreiten. Die Kernlamellen aus Nadelholz der Buche-Hybridträger müssen mindestens der Sortierklasse S 10 nach DIN 4074-1\(^5\) entsprechen. Die Querschnittsabmessungen der Lamellen dürfen b × h = 150 × 42 mm nicht überschreiten. Die Lamellen dürfen in Längsrichtung Keilzinkenverbindungen nach DIN 1052 aufweisen. Für die erforderlichen charakteristischen Biegefestigkeiten der Keilzinkenverbindungen gelten die Werte der Tabellen 2 und 3.

2.1.1.2 Die zu verklebenden Holzflächen müssen gehobelt sein. Das Hobeln darf frühestens 6 h vor der Verklebung durchgeführt werden. Bei der Verklebung muss die Holzfeuchte der Einzellamellen 9 % bis 12 % betragen.

2.1.2 Klebstoff

2.1.3 Aufbau und Anforderungen

Der Aufbau des Brettschichtholzes aus Buche darf homogen - h - (alle Lamellen gehören der gleichen Festigkeitsklasse an) oder kombiniert - c - (die äußeren und die inneren Lamellen gehören unterschiedlichen Festigkeitsklassen an) sein. Bei kombiniertem Aufbau müssen die äußeren Lamellen mit gleicher Festigkeitsklasse je Seite mindestens 1/6 der Trägerhöhe H, jedoch mindestens zwei Lamellen, umfassen.

Anforderungen an den Aufbau des Brettschichtholzes aus Buche sind Tabelle 2 zu entnehmen.

Tabelle 2: Anforderung an die Sortier-/Festigkeitsklassen der Lamellen und die charakteristische Biegefestigkeit der Keilzinkenverbindung (in N/mm²) für BS-Holz aus Buche unterschiedlicher Festigkeitsklassen

<table>
<thead>
<tr>
<th>GL 28h</th>
<th>GL 32c</th>
<th>GL 36c</th>
<th>GL 40c</th>
<th>GL 44c</th>
<th>GL 48c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edyn</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>>14000</td>
<td>>15000</td>
</tr>
</tbody>
</table>

Anforderungen an die inneren Lamellen

| Sortierung | LS 10 | LS 10 | LS 10 | LS 10+E13 | LS 10+E14 | LS 10+E14 |
| Edyn | - | - | - | >13000 | >14000 | >14000 |

Charakteristische Biegefestigkeit der Keilzinkenverbindungen

\[f_{m,k} \geq 47 \geq 55 \geq 58 \geq 62 \geq 65 \geq 69 \]

Anforderungen an den Aufbau der Buche-Hybridträger sind Tabelle 3 zu entnehmen.

Tabelle 3: Anforderung an die Sortier-/Festigkeitsklassen der Lamellen und die charakteristische Biegefestigkeit der Keilzinkenverbindung (in N/mm²) für BS-Holz Buche-Hybridträger unterschiedlicher Festigkeitsklassen

<table>
<thead>
<tr>
<th>GL 28 hyb</th>
<th>GL 32 hyb</th>
<th>GL 36 hyb</th>
<th>GL 40 hyb</th>
<th>GL 44 hyb</th>
<th>GL 48 hyb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edyn</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>>14000</td>
<td>>15000</td>
</tr>
</tbody>
</table>

Anforderungen an die Kernlamellen aus Nadelholz

<table>
<thead>
<tr>
<th>Sortierung</th>
<th>S 10</th>
<th>S 10</th>
<th>S 10</th>
<th>S 10</th>
<th>S 10</th>
<th>S 10</th>
</tr>
</thead>
</table>

Charakteristische Biegefestigkeit der Keilzinkenverbindungen der Lamellen aus Buche

\[f_{m,k} \geq 50 \geq 59 \geq 61 \geq 65 \geq 68 \geq 72 \]

Charakteristische Biegefestigkeit der Keilzinkenverbindungen der Kernlamellen aus Nadelholz

\[f_{m,k} \geq 32 \geq 32 \geq 32 \geq 32 \geq 32 \geq 32 \]
2.2 Herstellung und Kennzeichnung

2.2.1 Herstellung

Zusätzlich sind folgende Anforderungen zu beachten.

Die Keilzinkenverbindingen müssen nach DIN EN 385\(^6\) mindestens mit dem Profil 15 x 3,8 mm hergestellt werden.

Die Temperatur in den Herstellungsräumen muss mindestens 20 °C betragen.

Bei der Herstellung von BS-Holz aus Buche und von Buche-Hybridträgern sind die beim Deutschen Institut für Bautechnik hinterlegten Bestimmungen zu den Klebstoffen zu beachten.

Die Hersteller müssen im Besitz einer Bescheinigung über die Eignung zum Kleben von tragenden Holzbauteilen gemäß DIN 1052:2008-12, Abschnitt 14 und Anhang A oder DIN 1052-10:2012-05\(^7\), Abschnitt 5 sein.

2.2.2 Kennzeichnung

Darüber hinaus sind das BS-Holz aus Buche, die BS-Holz Buche-Hybridträger und/oder die Lieferscheine mit folgenden Angaben zu kennzeichnen:
- Bezeichnung des Zulassungsgegenstandes
- Festigkeitsklasse
- Tag der Herstellung

2.3 Übereinstimmungsnachweis

2.3.1 Allgemeines

Für die Erteilung des Übereinstimmungszertifikats und die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller des Bauprodukts eine hierfür anerkannte Zertifizierungsstelle sowie eine hierfür anerkannte Überwachungsstelle einzuschalten.

Die Erklärung, dass ein Übereinstimmungszertifikat erteilt ist, hat der Hersteller durch Kennzeichnung der Bauprodukte mit dem Übereinstimmungszeichen (U-Zeichen) unter Hinweis auf den Verwendungszweck abzugeben.

Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats zur Kenntnis zu geben.

\(^6\) DIN EN 385:2007-11

\(^7\) DIN 1052-10:2012-05
2.3.2 Werkseigene Produktionskontrolle

In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung verstanden, mit der dieser sicherstellt, dass die von ihm hergestellten Bauprodukte den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung entsprechen.

Zur Bestimmung des dynamischen Elastizitätsmoduls E_{dyn} der Lamellen aus Buche darf nur eine Verfahrensweise eingesetzt werden, für die die fremdüberwachende Stelle ihre Zustimmung gegeben hat.

Die werkseignene Produktionskontrolle soll mindestens die im Folgenden aufgeführten Maßnahmen einschließen:
- Überprüfung der Sortierung des Ausgangsmaterials
- Kontrolle und Prüfungen, die während der Herstellung durchzuführen sind:
 - Führen eines Leimbuches, in dem an jedem Leimtag mindestens folgende Aufzeichnungen zu machen sind:
 - Klebstoff: Fabrikat, Herstellungs- und Lieferdatum, Verfalldatum; Mischungsverhältnis von Harz und Härter, Holzfeuchtegehalt der Lamellen vor der Verklebung
 - Raumklima bei der Verklebung und Aushärtung
 - Auftragsmenge
 - Offene und geschlossene Wartezeit des Klebstoffs
 - Pressdruck
 - Pressdauer
 - Delaminierungsprüfung der Klebfugen nach DIN EN 391 \(^8\) Verfahren C an einem Prüfkörper je 10 m\(^2\) hergestelltem BS-Holz aus Buche oder von Buche-Hybridträgern. Die Anforderungen der DIN EN 388, Abschnitt 5.5.3, Tabelle 1 sind zu erfüllen.

Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen und auszuwerten. Die Aufzeichnungen müssen mindestens folgende Angaben enthalten:
- Bezeichnung des Bauproduktes bzw. des Ausgangsmaterials und der Bestandteile
- Art der Kontrolle oder Prüfung
- Datum der Herstellung und der Prüfung des Bauproduktes bzw. des Ausgangsmaterials oder der Bestandteile
- Ergebnis der Kontrollen und Prüfungen und, soweit zutreffend, Vergleich mit den Anforderungen
- Unterschrift des für die werkseignene Produktionskontrolle Verantwortlichen

Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren und der für die Fremdüberwachung eingeschalteten Überwachungsstelle vorzulegen. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

\(^8\) DIN EN 391:2002-04 Brettischichholz - Delaminierungsprüfung von Klebfugten

2.3.3 Fremdüberwachung

In jedem Herstellwerk ist die werkseigene Produktionskontrolle durch eine Fremdüberwachung regelmäßig zu überprüfen, mindestens jedoch zweimal jährlich. Im Rahmen der Fremdüberwachung ist eine Erstprüfung durchzuführen, und es können auch Proben für Stichprobenprüfungen entnommen werden. Die Probenahme und Prüfungen obliegen jeweils der anerkannten Überwachungsstelle.

Für die Fremdüberwachung von BS-Holz aus Buche und von BS-Holz Buche-Hybridträgern gilt DIN 1052:2008-12, Anhang H.4 sinngemäß. Es sind mindestens die im Rahmen der werkseigenen Produktionskontrolle gemäß Abschnitt 2.3.2 vorgesehenen Prüfungen durchzuführen.

3 Bestimmungen für Entwurf und Bemessung

3.1 Allgemeines

3.1.1 Der statische Nachweis für die Standsicherheit von Holzbauteilen unter Verwendung von BS-Holz aus Buche oder von Buche-Hybridträger ist in jedem Einzelfall zu führen.

3.1.3 Zur Berechnung des bezogenen Kippflankheitsgrades \(\lambda_{rel,m} \) des kritischen Kippmoments \(M_{y,\text{crit}} \) bzw. der kritischen Biegedruckspannung \(\sigma_{m,\text{crit}} \) nach DIN 1052:2008-12, Abschnitt 10.3.2 bzw. E3 oder DIN EN 1995-1-1:2010-12, Abschnitt 6.3.3 in Verbindung mit DIN EN 1995-1-1/NA NCI Zu 6.3.3 und NA 13.3 darf das Produkt der 5 %-Quantilen der Steifigkeitsspannungen mit dem Faktor 1,3 multipliziert werden.

3.2 Entwurf und Bemessung nach DIN 1052

3.2.1 Für BS-Holz aus Buche gelten die charakteristischen Festigkeits-, Steifigkeits- und Rohdichtekennwerte nach Tabelle 4.

Der Nachweis bei Druckbeanspruchungen rechtwinklig zur Faserrichtung ist mit einem Querdeckbeiwert von \(k_{e,90} = 1,0 \) für alle Auflagerfälle zu führen.
Tabelle 4: Charakteristische Festigkeits-, Steifigkeits- und Rohdichtekennwerte für BS-Holz aus Buche unterschiedlicher Festigkeitsklassen

<table>
<thead>
<tr>
<th></th>
<th>GL 28h</th>
<th>GL 32c</th>
<th>GL 36c</th>
<th>GL 40c</th>
<th>GL 44c</th>
<th>GL 48c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_{n,k}$ a,b</td>
<td>28</td>
<td>32</td>
<td>36</td>
<td>40</td>
<td>44</td>
<td>48</td>
</tr>
<tr>
<td>$f_{10,k}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>$f_{90,k}$</td>
<td>0,5</td>
<td>25</td>
<td>8,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f_{0,0,k}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rohdichtekennwert (kg/m³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E_{0,mean}$</td>
<td>13500</td>
<td>13500</td>
<td>13500</td>
<td>14300</td>
<td>15100</td>
<td>15100</td>
</tr>
<tr>
<td>$E_{0,05}$</td>
<td>12700</td>
<td>12700</td>
<td>12700</td>
<td>13700</td>
<td>14700</td>
<td>14700</td>
</tr>
<tr>
<td>$E_{90,mean}$</td>
<td>690</td>
<td>550</td>
<td></td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G_{mean}</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>650</td>
</tr>
</tbody>
</table>

a Bei Flachkant-Biegebeanspruchung der Lamellen bei Trägern mit einer Querschnittshöhe $h < 600$ mm darf der charakteristische Festigkeitswert mit dem Beiwert

$$k_h = \min\left(\frac{600}{h}^{0.14}, 1\right)$$

multipliziert werden.

b Die Werte gelten für Hochkant- und Flachkant-Biegebeanspruchung des Brettschichtholzes.

3.2.2

Der Nachweis bei Druckbeanspruchungen rechtwinklig zur Faserrichtung ist für die Decklamellen aus Buche mit einem Querdruckbeiwert von $k_{c,90} = 1,0$ für alle Auflagerfälle zu führen. Die Druckfestigkeit der Decklamellen rechtwinklig zur Faserrichtung $f_{c,90,k}$ kann Tabelle 4 entnommen werden.

Bei Druckbeanspruchungen rechtwinklig zur Faserrichtung ist zusätzlich der Nachweis für die Kernlamellen aus Nadelholz zu führen, wobei eine Spannungsausbreitung von 45° im Bereich der Decklamellen angenommen werden darf. Dabei dürfen die Querdruckbeiwerte der Normen DIN 1052 für die unterschiedlichen Auflagersituationen verwendet werden.
3.2.3 Tabelle 5: Charakteristische Festigkeits-, Steifigkeits- und Rohdichtekennwerte für BS-Holz Buche-Hybridträger unterschiedlicher Festigkeitsklassen

<table>
<thead>
<tr>
<th></th>
<th>GL 28 h</th>
<th>GL 32 h</th>
<th>GL 36 h</th>
<th>GL 40 h</th>
<th>GL 44 h</th>
<th>GL 48 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Festigkeitskennwerte (N/mm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f_{m,y,k}$ (^a) Hochkant-Biegebbeanspruchung des Brettspichtholzes</td>
<td>28</td>
<td>32</td>
<td>36</td>
<td>40</td>
<td>44</td>
<td>48</td>
</tr>
<tr>
<td>$f_{m,z,k}$ Flachkant-Biegebbeanspruchung des Brettspichtholzes</td>
<td>28</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>$f_{v,k}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,50</td>
<td></td>
</tr>
<tr>
<td>Steifigkeitskennwerte (N/mm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E_{0,mean}$</td>
<td>13200</td>
<td>13200</td>
<td>13200</td>
<td>14000</td>
<td>14700</td>
<td>14700</td>
</tr>
<tr>
<td>$E_{0,05}$</td>
<td>12400</td>
<td>12400</td>
<td>12400</td>
<td>13300</td>
<td>14200</td>
<td>14200</td>
</tr>
<tr>
<td>Rohdichtekennwert für die Kernlamellen aus Nadelholz (kg/m³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_k</td>
<td>380</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Bei Flachkant-Biegebbeanspruchung der Lamellen bei Trägern mit einer Querschnittshöhe $h < 600$ mm darf der charakteristische Festigkeitswert mit dem Beiwert
\[
k_{c} = \min \left(\frac{600}{h} \right)^{0.14},1.1\]
multipliziert werden.

Bei $h > 600$ mm muss der charakteristische Festigkeitswert mit dem Beiwert
\[
k_{c} = \max \left(\frac{600}{h} \right)^{0.14},0.9\]
multipliziert werden.

3.3 Entwurf und Bemessung nach DIN EN 1995-1-1 in Verbindung mit DIN EN 1995-1-1/NA

3.3.1

3.3.2
Für den Rissfaktor k_{cr} gilt:

$k_{cr} = 1.0$ bei BS-Holz aus Buche und bei BS-Holz Buche-Hybridträger.

3.4 Brand-, Feuchte-, Schall- und Wärmeschutz
Für die erforderlichen Nachweise zum Wärmeschutz, Feuchteschutz, Schallschutz und Brandschutz gelten die hierfür erlassenen Vorschriften, Normen und Richtlinien.
4 Bestimmungen für die Ausführung

4.1 Durchbrüche sind in BS-Holz aus Buche und Buche-Hybridträgern nicht zulässig.

Reiner Schäpel
Referatsleiter